379 lines
8 KiB
C
379 lines
8 KiB
C
#include "astro.h"
|
|
|
|
double k1, k2, k3, k4;
|
|
double mnom, msun, noded, dmoon;
|
|
|
|
void
|
|
moon(void)
|
|
{
|
|
Moontab *mp;
|
|
double dlong, lsun, psun;
|
|
double eccm, eccs, chp, cpe;
|
|
double v0, t0, m0, j0;
|
|
double arg1, arg2, arg3, arg4, arg5, arg6, arg7;
|
|
double arg8, arg9, arg10;
|
|
double dgamma, k5, k6;
|
|
double lterms, sterms, cterms, nterms, pterms, spterms;
|
|
double gamma1, gamma2, gamma3, arglat;
|
|
double xmp, ymp, zmp;
|
|
double obl2;
|
|
|
|
/*
|
|
* the fundamental elements - all referred to the epoch of
|
|
* Jan 0.5, 1900 and to the mean equinox of date.
|
|
*/
|
|
|
|
dlong = 270.434164 + 13.1763965268*eday - .001133*capt2
|
|
+ 2.e-6*capt3;
|
|
argp = 334.329556 + .1114040803*eday - .010325*capt2
|
|
- 12.e-6*capt3;
|
|
node = 259.183275 - .0529539222*eday + .002078*capt2
|
|
+ 2.e-6*capt3;
|
|
lsun = 279.696678 + .9856473354*eday + .000303*capt2;
|
|
psun = 281.220833 + .0000470684*eday + .000453*capt2
|
|
+ 3.e-6*capt3;
|
|
|
|
dlong = fmod(dlong, 360.);
|
|
argp = fmod(argp, 360.);
|
|
node = fmod(node, 360.);
|
|
lsun = fmod(lsun, 360.);
|
|
psun = fmod(psun, 360.);
|
|
|
|
eccm = 22639.550;
|
|
eccs = .01675104 - .00004180*capt;
|
|
incl = 18461.400;
|
|
cpe = 124.986;
|
|
chp = 3422.451;
|
|
|
|
/*
|
|
* some subsidiary elements - they are all longitudes
|
|
* and they are referred to the epoch 1/0.5 1900 and
|
|
* to the fixed mean equinox of 1850.0.
|
|
*/
|
|
|
|
v0 = 342.069128 + 1.6021304820*eday;
|
|
t0 = 98.998753 + 0.9856091138*eday;
|
|
m0 = 293.049675 + 0.5240329445*eday;
|
|
j0 = 237.352319 + 0.0830912295*eday;
|
|
|
|
/*
|
|
* the following are periodic corrections to the
|
|
* fundamental elements and constants.
|
|
* arg3 is the "Great Venus Inequality".
|
|
*/
|
|
|
|
arg1 = 41.1 + 20.2*(capt+.5);
|
|
arg2 = dlong - argp + 33. + 3.*t0 - 10.*v0 - 2.6*(capt+.5);
|
|
arg3 = dlong - argp + 151.1 + 16.*t0 - 18.*v0 - (capt+.5);
|
|
arg4 = node;
|
|
arg5 = node + 276.2 - 2.3*(capt+.5);
|
|
arg6 = 313.9 + 13.*t0 - 8.*v0;
|
|
arg7 = dlong - argp + 112.0 + 29.*t0 - 26.*v0;
|
|
arg8 = dlong + argp - 2.*lsun + 273. + 21.*t0 - 20.*v0;
|
|
arg9 = node + 290.1 - 0.9*(capt+.5);
|
|
arg10 = 115. + 38.5*(capt+.5);
|
|
arg1 *= radian;
|
|
arg2 *= radian;
|
|
arg3 *= radian;
|
|
arg4 *= radian;
|
|
arg5 *= radian;
|
|
arg6 *= radian;
|
|
arg7 *= radian;
|
|
arg8 *= radian;
|
|
arg9 *= radian;
|
|
arg10 *= radian;
|
|
|
|
dlong +=
|
|
(0.84 *sin(arg1)
|
|
+ 0.31 *sin(arg2)
|
|
+ 14.27 *sin(arg3)
|
|
+ 7.261*sin(arg4)
|
|
+ 0.282*sin(arg5)
|
|
+ 0.237*sin(arg6)
|
|
+ 0.108*sin(arg7)
|
|
+ 0.126*sin(arg8))/3600.;
|
|
|
|
argp +=
|
|
(- 2.10 *sin(arg1)
|
|
- 0.118*sin(arg3)
|
|
- 2.076*sin(arg4)
|
|
- 0.840*sin(arg5)
|
|
- 0.593*sin(arg6))/3600.;
|
|
|
|
node +=
|
|
(0.63*sin(arg1)
|
|
+ 0.17*sin(arg3)
|
|
+ 95.96*sin(arg4)
|
|
+ 15.58*sin(arg5)
|
|
+ 1.86*sin(arg9))/3600.;
|
|
|
|
t0 +=
|
|
(- 6.40*sin(arg1)
|
|
- 1.89*sin(arg6))/3600.;
|
|
|
|
psun +=
|
|
(6.40*sin(arg1)
|
|
+ 1.89*sin(arg6))/3600.;
|
|
|
|
dgamma = - 4.318*cos(arg4)
|
|
- 0.698*cos(arg5)
|
|
- 0.083*cos(arg9);
|
|
|
|
j0 +=
|
|
0.33*sin(arg10);
|
|
|
|
/*
|
|
* the following factors account for the fact that the
|
|
* eccentricity, solar eccentricity, inclination and
|
|
* parallax used by Brown to make up his coefficients
|
|
* are both wrong and out of date. Brown did the same
|
|
* thing in a different way.
|
|
*/
|
|
|
|
k1 = eccm/22639.500;
|
|
k2 = eccs/.01675104;
|
|
k3 = 1. + 2.708e-6 + .000108008*dgamma;
|
|
k4 = cpe/125.154;
|
|
k5 = chp/3422.700;
|
|
|
|
/*
|
|
* the principal arguments that are used to compute
|
|
* perturbations are the following differences of the
|
|
* fundamental elements.
|
|
*/
|
|
|
|
mnom = dlong - argp;
|
|
msun = lsun - psun;
|
|
noded = dlong - node;
|
|
dmoon = dlong - lsun;
|
|
|
|
/*
|
|
* solar terms in longitude
|
|
*/
|
|
|
|
lterms = 0.0;
|
|
mp = moontab;
|
|
for(;;) {
|
|
if(mp->f == 0.0)
|
|
break;
|
|
lterms += sinx(mp->f,
|
|
mp->c[0], mp->c[1],
|
|
mp->c[2], mp->c[3], 0.0);
|
|
mp++;
|
|
}
|
|
mp++;
|
|
|
|
/*
|
|
* planetary terms in longitude
|
|
*/
|
|
|
|
lterms += sinx(0.822, 0,0,0,0, t0-v0);
|
|
lterms += sinx(0.307, 0,0,0,0, 2.*t0-2.*v0+179.8);
|
|
lterms += sinx(0.348, 0,0,0,0, 3.*t0-2.*v0+272.9);
|
|
lterms += sinx(0.176, 0,0,0,0, 4.*t0-3.*v0+271.7);
|
|
lterms += sinx(0.092, 0,0,0,0, 5.*t0-3.*v0+199.);
|
|
lterms += sinx(0.129, 1,0,0,0, -t0+v0+180.);
|
|
lterms += sinx(0.152, 1,0,0,0, t0-v0);
|
|
lterms += sinx(0.127, 1,0,0,0, 3.*t0-3.*v0+180.);
|
|
lterms += sinx(0.099, 0,0,0,2, t0-v0);
|
|
lterms += sinx(0.136, 0,0,0,2, 2.*t0-2.*v0+179.5);
|
|
lterms += sinx(0.083, -1,0,0,2, -4.*t0+4.*v0+180.);
|
|
lterms += sinx(0.662, -1,0,0,2, -3.*t0+3.*v0+180.0);
|
|
lterms += sinx(0.137, -1,0,0,2, -2.*t0+2.*v0);
|
|
lterms += sinx(0.133, -1,0,0,2, t0-v0);
|
|
lterms += sinx(0.157, -1,0,0,2, 2.*t0-2.*v0+179.6);
|
|
lterms += sinx(0.079, -1,0,0,2, -8.*t0+6.*v0+162.6);
|
|
lterms += sinx(0.073, 2,0,0,-2, 3.*t0-3.*v0+180.);
|
|
lterms += sinx(0.643, 0,0,0,0, -t0+j0+178.8);
|
|
lterms += sinx(0.187, 0,0,0,0, -2.*t0+2.*j0+359.6);
|
|
lterms += sinx(0.087, 0,0,0,0, j0+289.9);
|
|
lterms += sinx(0.165, 0,0,0,0, -t0+2.*j0+241.5);
|
|
lterms += sinx(0.144, 1,0,0,0, t0-j0+1.0);
|
|
lterms += sinx(0.158, 1,0,0,0, -t0+j0+179.0);
|
|
lterms += sinx(0.190, 1,0,0,0, -2.*t0+2.*j0+180.0);
|
|
lterms += sinx(0.096, 1,0,0,0, -2.*t0+3.*j0+352.5);
|
|
lterms += sinx(0.070, 0,0,0,2, 2.*t0-2.*j0+180.);
|
|
lterms += sinx(0.167, 0,0,0,2, -t0+j0+178.5);
|
|
lterms += sinx(0.085, 0,0,0,2, -2.*t0+2.*j0+359.2);
|
|
lterms += sinx(1.137, -1,0,0,2, 2.*t0-2.*j0+180.3);
|
|
lterms += sinx(0.211, -1,0,0,2, -t0+j0+178.4);
|
|
lterms += sinx(0.089, -1,0,0,2, -2.*t0+2.*j0+359.2);
|
|
lterms += sinx(0.436, -1,0,0,2, 2.*t0-3.*j0+7.5);
|
|
lterms += sinx(0.240, 2,0,0,-2, -2.*t0+2.*j0+179.9);
|
|
lterms += sinx(0.284, 2,0,0,-2, -2.*t0+3.*j0+172.5);
|
|
lterms += sinx(0.195, 0,0,0,0, -2.*t0+2.*m0+180.2);
|
|
lterms += sinx(0.327, 0,0,0,0, -t0+2.*m0+224.4);
|
|
lterms += sinx(0.093, 0,0,0,0, -2.*t0+4.*m0+244.8);
|
|
lterms += sinx(0.073, 1,0,0,0, -t0+2.*m0+223.3);
|
|
lterms += sinx(0.074, 1,0,0,0, t0-2.*m0+306.3);
|
|
lterms += sinx(0.189, 0,0,0,0, node+180.);
|
|
|
|
/*
|
|
* solar terms in latitude
|
|
*/
|
|
|
|
sterms = 0;
|
|
for(;;) {
|
|
if(mp->f == 0)
|
|
break;
|
|
sterms += sinx(mp->f,
|
|
mp->c[0], mp->c[1],
|
|
mp->c[2], mp->c[3], 0);
|
|
mp++;
|
|
}
|
|
mp++;
|
|
|
|
cterms = 0;
|
|
for(;;) {
|
|
if(mp->f == 0)
|
|
break;
|
|
cterms += cosx(mp->f,
|
|
mp->c[0], mp->c[1],
|
|
mp->c[2], mp->c[3], 0);
|
|
mp++;
|
|
}
|
|
mp++;
|
|
|
|
nterms = 0;
|
|
for(;;) {
|
|
if(mp->f == 0)
|
|
break;
|
|
nterms += sinx(mp->f,
|
|
mp->c[0], mp->c[1],
|
|
mp->c[2], mp->c[3], 0);
|
|
mp++;
|
|
}
|
|
mp++;
|
|
|
|
/*
|
|
* planetary terms in latitude
|
|
*/
|
|
|
|
pterms =
|
|
sinx(0.215, 0,0,0,0, dlong);
|
|
|
|
/*
|
|
* solar terms in parallax
|
|
*/
|
|
|
|
spterms = 3422.700;
|
|
for(;;) {
|
|
if(mp->f == 0)
|
|
break;
|
|
spterms += cosx(mp->f,
|
|
mp->c[0], mp->c[1],
|
|
mp->c[2], mp->c[3], 0);
|
|
mp++;
|
|
}
|
|
|
|
/*
|
|
* planetary terms in parallax
|
|
*/
|
|
|
|
spterms = spterms;
|
|
|
|
/*
|
|
* computation of longitude
|
|
*/
|
|
|
|
lambda = (dlong + lterms/3600.)*radian;
|
|
|
|
/*
|
|
* computation of latitude
|
|
*/
|
|
|
|
arglat = (noded + sterms/3600.)*radian;
|
|
gamma1 = 18519.700 * k3;
|
|
gamma2 = -6.241 * k3*k3*k3;
|
|
gamma3 = 0.004 * k3*k3*k3*k3*k3;
|
|
|
|
k6 = (gamma1 + cterms) / gamma1;
|
|
|
|
beta = k6 * (gamma1*sin(arglat) + gamma2*sin(3.*arglat)
|
|
+ gamma3*sin(5.*arglat) + nterms)
|
|
+ pterms;
|
|
if(flags['o'])
|
|
beta -= 0.6;
|
|
beta *= radsec;
|
|
|
|
/*
|
|
* computation of parallax
|
|
*/
|
|
|
|
spterms = k5 * spterms *radsec;
|
|
hp = spterms + (spterms*spterms*spterms)/6.;
|
|
|
|
rad = hp/radsec;
|
|
rp = 1.;
|
|
semi = .0799 + .272453*(hp/radsec);
|
|
if(dmoon < 0.)
|
|
dmoon += 360.;
|
|
mag = dmoon/360.;
|
|
|
|
/*
|
|
* change to equatorial coordinates
|
|
*/
|
|
|
|
lambda += phi;
|
|
obl2 = obliq + eps;
|
|
xmp = rp*cos(lambda)*cos(beta);
|
|
ymp = rp*(sin(lambda)*cos(beta)*cos(obl2) - sin(obl2)*sin(beta));
|
|
zmp = rp*(sin(lambda)*cos(beta)*sin(obl2) + cos(obl2)*sin(beta));
|
|
|
|
alpha = atan2(ymp, xmp);
|
|
delta = atan2(zmp, sqrt(xmp*xmp+ymp*ymp));
|
|
meday = eday;
|
|
mhp = hp;
|
|
|
|
geo();
|
|
}
|
|
|
|
double
|
|
sinx(double coef, int i, int j, int k, int m, double angle)
|
|
{
|
|
double x;
|
|
|
|
x = i*mnom + j*msun + k*noded + m*dmoon + angle;
|
|
x = coef*sin(x*radian);
|
|
if(i < 0)
|
|
i = -i;
|
|
for(; i>0; i--)
|
|
x *= k1;
|
|
if(j < 0)
|
|
j = -j;
|
|
for(; j>0; j--)
|
|
x *= k2;
|
|
if(k < 0)
|
|
k = -k;
|
|
for(; k>0; k--)
|
|
x *= k3;
|
|
if(m & 1)
|
|
x *= k4;
|
|
|
|
return x;
|
|
}
|
|
|
|
double
|
|
cosx(double coef, int i, int j, int k, int m, double angle)
|
|
{
|
|
double x;
|
|
|
|
x = i*mnom + j*msun + k*noded + m*dmoon + angle;
|
|
x = coef*cos(x*radian);
|
|
if(i < 0)
|
|
i = -i;
|
|
for(; i>0; i--)
|
|
x *= k1;
|
|
if(j < 0)
|
|
j = -j;
|
|
for(; j>0; j--)
|
|
x *= k2;
|
|
if(k < 0)
|
|
k = -k;
|
|
for(; k>0; k--)
|
|
x *= k3;
|
|
if(m & 1)
|
|
x *= k4;
|
|
|
|
return x;
|
|
}
|