163 lines
7.7 KiB
HTML
163 lines
7.7 KiB
HTML
<head>
|
|
<title>quaternion(3) - Plan 9 from User Space</title>
|
|
<meta content="text/html; charset=utf-8" http-equiv=Content-Type>
|
|
</head>
|
|
<body bgcolor=#ffffff>
|
|
<table border=0 cellpadding=0 cellspacing=0 width=100%>
|
|
<tr height=10><td>
|
|
<tr><td width=20><td>
|
|
<tr><td width=20><td><b>QUATERNION(3)</b><td align=right><b>QUATERNION(3)</b>
|
|
<tr><td width=20><td colspan=2>
|
|
<br>
|
|
<p><font size=+1><b>NAME </b></font><br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp,
|
|
qmid, qsqrt – Quaternion arithmetic<br>
|
|
|
|
</table>
|
|
<p><font size=+1><b>SYNOPSIS </b></font><br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
<tt><font size=+1>#include <draw.h>
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>#include <geometry.h>
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qadd(Quaternion q, Quaternion r)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qsub(Quaternion q, Quaternion r)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qneg(Quaternion q)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qmul(Quaternion q, Quaternion r)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qdiv(Quaternion q, Quaternion r)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qinv(Quaternion q)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>double qlen(Quaternion p)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qunit(Quaternion q)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>void qtom(Matrix m, Quaternion q)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion mtoq(Matrix mat)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion slerp(Quaternion q, Quaternion r, double a)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qmid(Quaternion q, Quaternion r)
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
</font></tt>
|
|
<tt><font size=+1>Quaternion qsqrt(Quaternion q)<br>
|
|
</font></tt>
|
|
</table>
|
|
<p><font size=+1><b>DESCRIPTION </b></font><br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
The Quaternions are a non-commutative extension field of the Real
|
|
numbers, designed to do for rotations in 3-space what the complex
|
|
numbers do for rotations in 2-space. Quaternions have a real component
|
|
<i>r</i> and an imaginary vector component <i>v</i>=(<i>i</i>,<i>j</i>,<i>k</i>). Quaternions add
|
|
componentwise and multiply according to
|
|
the rule (<i>r</i>,<i>v</i>)(<i>s</i>,<i>w</i>)=(<i>rs</i>-<i>v</i>.<i>w</i>, <i>rw</i>+<i>vs</i>+<i>v</i>x<i>w</i>), where . and x are the ordinary
|
|
vector dot and cross products. The multiplicative inverse of a
|
|
non-zero quaternion (<i>r</i>,<i>v</i>) is (<i>r</i>,<i>-v</i>)/(<i>r</i>2-<i>v</i>.<i>v</i>).
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
|
|
The following routines do arithmetic on quaternions, represented
|
|
as<br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
<tt><font size=+1>typedef struct Quaternion Quaternion;<br>
|
|
struct Quaternion{<br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
double r, i, j, k;<br>
|
|
|
|
</table>
|
|
};<br>
|
|
</font></tt>
|
|
</table>
|
|
Name Description<br>
|
|
<tt><font size=+1>qadd</font></tt> Add two quaternions.<br>
|
|
<tt><font size=+1>qsub</font></tt> Subtract two quaternions.<br>
|
|
<tt><font size=+1>qneg</font></tt> Negate a quaternion.<br>
|
|
<tt><font size=+1>qmul</font></tt> Multiply two quaternions.<br>
|
|
<tt><font size=+1>qdiv</font></tt> Divide two quaternions.<br>
|
|
<tt><font size=+1>qinv</font></tt> Return the multiplicative inverse of a quaternion.<br>
|
|
<tt><font size=+1>qlen</font></tt> Return <tt><font size=+1>sqrt(q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k)</font></tt>, the length of
|
|
a quaternion.<br>
|
|
<tt><font size=+1>qunit</font></tt> Return a unit quaternion (<i>length=1</i>) with components proportional
|
|
to <i>q</i>’s.
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
|
|
A rotation by angle <i>θ</i> about axis <i>A</i> (where <i>A</i> is a unit vector)
|
|
can be represented by the unit quaternion <i>q</i>=(cos <i>θ</i>/2, <i>A</i>sin <i>θ</i>/2).
|
|
The same rotation is represented by -<i>q</i>; a rotation by -<i>θ</i> about -<i>A</i>
|
|
is the same as a rotation by <i>θ</i> about <i>A</i>. The quaternion <i>q</i> transforms
|
|
points by (0,<i>x’,y’,z’</i>) = <i>q</i>-1(0,<i>x,y,z</i>)<i>q</i>. Quaternion
|
|
multiplication composes rotations. The orientation of an object
|
|
in 3-space can be represented by a quaternion giving its rotation
|
|
relative to some ‘standard’ orientation.
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=5><td></table>
|
|
|
|
The following routines operate on rotations or orientations represented
|
|
as unit quaternions:<br>
|
|
<tt><font size=+1>mtoq</font></tt> Convert a rotation matrix (see <a href="../man3/matrix.html"><i>matrix</i>(3)</a>) to a unit quaternion.<br>
|
|
<tt><font size=+1>qtom</font></tt> Convert a unit quaternion to a rotation matrix.<br>
|
|
<tt><font size=+1>slerp</font></tt> Spherical lerp. Interpolate between two orientations. The
|
|
rotation that carries <i>q</i> to <i>r</i> is <i>q</i>-1<i>r</i>, so <tt><font size=+1>slerp(q, r, t)</font></tt> is <i>q</i>(<i>q</i>-1<i>r</i>)<i>t</i>.<br>
|
|
<tt><font size=+1>qmid slerp(q, r, .5)<br>
|
|
qsqrt</font></tt> The square root of <i>q</i>. This is just a rotation about the same
|
|
axis by half the angle.<br>
|
|
|
|
</table>
|
|
<p><font size=+1><b>SOURCE </b></font><br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
<tt><font size=+1>/usr/local/plan9/src/libgeometry/quaternion.c<br>
|
|
</font></tt>
|
|
</table>
|
|
<p><font size=+1><b>SEE ALSO </b></font><br>
|
|
|
|
<table border=0 cellpadding=0 cellspacing=0><tr height=2><td><tr><td width=20><td>
|
|
|
|
<a href="../man3/matrix.html"><i>matrix</i>(3)</a>, <a href="../man3/qball.html"><i>qball</i>(3)</a><br>
|
|
|
|
</table>
|
|
|
|
<td width=20>
|
|
<tr height=20><td>
|
|
</table>
|
|
<!-- TRAILER -->
|
|
<table border=0 cellpadding=0 cellspacing=0 width=100%>
|
|
<tr height=15><td width=10><td><td width=10>
|
|
<tr><td><td>
|
|
<center>
|
|
<a href="../../"><img src="../../dist/spaceglenda100.png" alt="Space Glenda" border=1></a>
|
|
</center>
|
|
</table>
|
|
<!-- TRAILER -->
|
|
</body></html>
|